
TinyRAM Architecture Specification

v2.000

Eli Ben-Sasson Alessandro Chiesa Daniel Genkin Eran Tromer Madars Virza

StarkWare UC Berkeley University of Michigan
Tel Aviv University and

Columbia University
MIT

eli@starkware.co alexch@berkeley.edu genkin@umich.edu tromer@cs.tau.ac.il madars@mit.edu

SCIPR Lab
scipr-lab.org

March 30, 2020

Abstract

We describe the TinyRAM architecture, a simple RISC random-access machine with byte-
addressable random-access memory and input tapes. TinyRAM comes in two variants: one
following the Harvard architecture and one following the von Neumann architecture.

The Succinct Computational Integrity and Privacy Research (SCIPR) project constructs mecha-
nisms for proving correct execution of TinyRAM programs, and TinyRAM is designed for efficiency
in this setting.

In particular, TinyRAM strikes a balance between two opposing requirements:

(1) Sufficient expressibility to support short and efficient assembly code when compiling from
high-level programming languages, and

(2) Small instruction set, with instructions that are simple to verify via arithmetic circuits,
resulting in efficient verification using SCIPR’s algorithmic and cryptographic mechanisms.

This specification greatly benefited from comments by former SCIPR Lab members:
Ohad Barta, Lior Greenblatt, Shaul Kfir, Michael Riabzev, Gil Timnat, and Arnon Yogev.

mailto:eli@starkware.co
mailto:alexch@berkeley.edu
mailto:genkin@umich.edu
mailto:tromer@cs.tau.ac.il
mailto:madars@mit.edu
http://scipr-lab.org

Contents

1 Introduction 3

2 Architecture Overview 5

3 Accepting Computations 7

4 Instructions 8

5 Assembly Language 13

6 Preamble 14

7 Binary Encoding Of Instructions 15

References 17

2

1 Introduction

The need to efficiently express correctness of nondeterministic computations arises in various appli-
cations that utilize proof systems for achieving certain security properties. For instance, this need
arises in zero-knowledge proofs, probabilistically-checkable proofs, and others.

We describe the TinyRAM architecture, which is a random-access machine designed to be a
convenient tool to efficiently express correctness of nondeterministic computations. TinyRAM is a
reduced instruction set computer (RISC) with byte-addressable random-access memory; it comes
in two variants: one following the Harvard architecture (where data and program lie in separate
address spaces, and the latter is read-only), and one following the von Neumann one (data and
program lie in the same read-write address space).

TinyRAM strikes a balance between two opposing goals:

• Having an architecture that is expressive enough to allow for short and efficient assembly code
obtained by compiling programs written in high-level programming languages; and

• Having an architecture that is minimalistic enough to allow for efficient reductions from the
correctness of program computations to arithmetic circuit satisfiability (and other algebraic con-
straint satisfaction problems).

TinyRAM was introduced by Ben-Sasson et al. [BCG+13] in order to express correctness of nonde-
terministic computations in the setting of verifiable delegation of computations. For a discussion on
the engineering choices and motivation behind the design of TinyRAM, see [BCG+13]. Originally
defined as a Harvard architecture (where the code is fixed), TinyRAM was extended in subsequent
papers [BCTV14b, BCTV14a] into a von Neumann architecture (where the code is stored in RAM
and can self-modify). In this document, we focus on a precise specification of TinyRAM.

Versioning. Version 2.000 of the TinyRAM specification adds the von Neumann architecture
variant, switches to byte-level addressing, changes the binary opcode representation, and changes
the preamble code. This specification is meant to be consistent with libsnark [SCI], but may have
minor deviations from the aforementioned papers, e.g., in the preamble code and initial register
state.

3

Illustrative application: succinctly verifying nondeterministic computations. We de-
scribe a simple example that motivates the need for expressing the correctness of nondeterministic
computations in security applications.

Consider two parties, Alice and Bob, who respectively own inputs x and w. Alice wishes to
learn the correct output of an algorithm A on input (x,w), but does not want to incur the cost of
computing the algorithm’s output z := A(x,w).1 Specifically, Alice is only willing to run in time
that is proportional to the length of her own input (i.e., |x|) and the length of the output (i.e.,
|z|) but is not willing to run in time that is proportional to Bob’s input (i.e., |w|) nor to the time
needed to compute the algorithm’s output z.

If Alice trusts Bob (and Bob is indeed honest), then Alice’s efficiency requirement can be easily
met as follows: Alice sends x to Bob, then Bob computes z = A(x,w) and sends z to Alice. Alice
thus learns z without incurring the cost of computing z.

But what if Alice does not trust Bob? Can the efficiency requirements still be met?
In such a case, Bob needs to convince Alice that his claimed computation’s output z̃ does equal

the correct output z. In other words, after learning x from Alice, Bob wants to convince Alice
of the statement “there exists w such that z̃ = A(x,w)”. Using terminology from Theoretical
Computer Science, such a statement is nondeterministic in the sense that Bob’s input w is not
fixed by the statement but rather is existentially quantified: Alice only cares that there exists some
choice for Bob’s input that correctly produces the claimed output z̃. (The input w is sometimes
called a “witness” because it witnesses the fact that the output z̃ is a legitimate output of the
computation.)

Crucially, Bob must use a very efficient method to convince Alice that the aforementioned
nondeterministic statement holds, because Alice is not willing to compute z from scratch. (In
particular, Bob cannot simply send w to Alice as “proof” that z̃ = A(x,w).) So Bob needs to
use a cryptographic tool that is known as a proof system with succinct verification, which is a
proof system that enables one party (the prover) to convince another one (the verifier) of the
truth of a nondeterministic statement, while requiring the other party to invest resources that are
proportional only to the nondeterministic statement’s size.2

Being able to formally express nondeterministic statements is crucial for using in practice such
a proof system, and TinyRAM can be used to efficiently express nondeterministic statements.

1An important special case of this setting is when w is the empty string; in such a case Alice wishes to enlist Bob’s
help in computing the output z of the algorithm A when given her input x.

2Note that, in the example mentioned above, the statement size is indeed proportional only to |x| and |z|, as well
as the size of the description of A, but is not proportional to |w|, or the time to compute z.

4

2 Architecture Overview

TinyRAM (version 2.000) is parametrized by two integers: the word size, denoted W and required
to be a power of 2 and divisible by 8, and the number of registers, denoted K. When we wish to
be precise, we explicitly denote this by using the notation TinyRAMW,K .

The state of the machine consists of the following.

• The program counter, denoted pc; it consists of W bits.

• K general-purpose registers, denoted r0, r1, . . . , r(K − 1); each register consists of W bits.

• The (condition) flag, denoted flag; it consists of a single bit.

• Memory, which is a linear array of 2W bytes. When storing or loading blocks of multiple bytes,
we use the little-endian convention (i.e., the least-significant byte is at the lowest address). We
say that a block is aligned to the a-th byte if its least-significant byte is at address a.

• Two tapes, each containing a string of W -bit words; each tape is read-only in one direction.
One tape is for a primary input x and the other tape is for an auxiliary input w.
We treat the primary input as given, and the auxiliary input as nondeterministic advice.
(See discussion about TinyRAM accepting computations in Section 3.)

At each step, the machine executes an instruction, which changes the machine’s state. We specify
the available instructions in Section 4; briefly, the instruction set of TinyRAM includes simple load
and store instructions for accessing random-access memory (both as byte or word blocks), as well
as simple integer, shift, logical, compare, move, and jump instructions. In particular, TinyRAM can
efficiently implement control flow, loops, subroutines, recursion, and so on. Complex instructions,
such as floating-point arithmetic, are not directly supported and can be implemented “in software”.

TinyRAM has two variants, depending on where instructions to be executed reside.

Harvard architecture TinyRAM (hvTinyRAM). In hvTinyRAM, following the Harvard architec-
ture paradigm, a program P is stored in a separate, read-only, address space (i.e., different from the
read-write data address space) simply as a sequence of instructions. In such a case, the initial state
of the machine is as follows: the contents of pc, all general-purpose registers, flag, and memory
are all 0; the content of one tape defines the primary input and that of the other tape defines the
auxiliary input. Then, at every time step, the machine fetches and executes the pc-th instruction
of P;3 every instruction increments pc by 1 (unless it explicitly modifies pc). The machine’s only
input is via the two input tapes, and its only output is via an answer instruction (which also ter-
minates execution) that has a single argument A, representing the return value. The return value
A = 0 by default means “accept”. (If pc is not an integer in {0, . . . , L− 1}, where L is the number
of instructions in P, then the instruction answer 1 is fetched as default.)

Von Neumann architecture TinyRAM (vnTinyRAM). In vnTinyRAM, following the von Neu-
mann architecture paradigm, the program P is initially stored in the same, read-write, address
space as data. In particular, memory is not initialized to “all zeros” but, rather, its initial contents
are defined by P (and may, more generally, include both instructions and initial data). In memory,
any TinyRAM instruction is represented via a double word (see Section 7 for the binary encoding).

3We defined pc as a W -bit string. We use pc to also denote the corresponding integer between 0 and 2W − 1.

5

Thus, in vnTinyRAM, the initial state of the machine is as follows. The contents of all general-
purpose registers and flag are all 0. The content of one tape defines the primary input and that of
the other tape defines the auxiliary input. The initial contents of pc is 0, so that execution begins
with the instruction encoded by the double word aligned to the 0-th byte in memory.

Then, at every time step, the machine fetches and executes the instruction encoded by the
double word aligned to the [pc]2W -th byte in memory, where [pc]2W denotes the unsigned integer
given by pc rounded down to a multiple of 2W/8 (i.e, setting its log2W − 2 least-significant bits
set to 0); every instruction increments pc by 2W/8 (unless it explicitly modifies pc).

The machine’s only input is via the two input tapes and initial memory, and (as in hvTinyRAM)
its only output is via an answer instruction (which also terminates execution) that has a single
argument A, representing the return value. Again, A = 0 by default means “accept”.

See Figure 1 below for a diagram of the two variants of TinyRAM.

random
access

TinyRAM
program

0
1
2
3
4
5

2ௐ − 1
⋮ ⋮

memory

primary input tape

auxiliary input tape

(2ௐ bytes)

pc r0 r1 … r(𝐾-1) flag

⋮
⋮

(a) A diagram of hvTinyRAM.

random
access

0
1
2
3
4
5

2ௐ − 1
⋮ ⋮

memory

primary input tape

auxiliary input tape

(2ௐ bytes)

pc r0 r1 … r(𝐾-1) flag

⋮
⋮

(b) A diagram of vnTinyRAM.

Figure 1: A diagram of the two variants of TinyRAM: the Harvard architecture variant
(hvTinyRAM), and the von Neumann architecture variant (vnTinyRAM). In both dia-
grams, the word size is W and the number of registers is K. The main difference between
the two diagrams is where the TinyRAM program resides: for hvTinyRAM, the program
resides in a separate address space; while, for vnTinyRAM, the program resides in the
same address space as data. (In particular, in the case of von Neumann case, a program
may modify its own code.)

6

3 Accepting Computations

In Section 1 we stated that TinyRAM is designed to be a convenient tool for expressing the correct-
ness of nondeterministic computations. We now formalize what are the “good” nondeterministic
computations on a TinyRAM machine.

We first introduce the notion of acceptance for a TinyRAM computation: a computation on
TinyRAM is accepting (i.e., “good”) if execution halts with the instruction answer 0. More precisely,
fix a word size W and number of registers K, let P be a TinyRAMW,K program, and let x and w
be strings of W -bit words. We say that P(x,w) accepts in T steps if P, with x as primary input
and w as auxiliary input, executes the instruction answer 0 in step T .4

The set of accepting computations is L = ∪W,K LW,K , where LW,K is the set of triples
(P, x, T) where P is a TinyRAMW,K program, x is a string of W -bit words, and T is a time bound,
such that there exists a string w of W -bit words for which P(x,w) accepts in T steps.5

Now, given a nondeterministic computation, it is straightforward to encode it into a triple
(P, x, T) such that (P, x, T) ∈ L if and only if the nondeterministic computation is correct. For
instance, consider the statement “there is some w such that z̃ = A(x,w)” that we mentioned in Sec-
tion 1; then consider the TinyRAM program P that works as follows: given as input ((A, x, z̃), w)),
compute z = A(x,w), and halt with answer 0 if z̃ = z and otherwise halt with answer 1. Clearly,
if one is convinced that (P, (A, x, z̃), T) ∈ L, for some T , then one is also convinced that A(x,w)
outputs z̃ within T steps for some choice of w.6

Thus, the above is the precise sense in which we mean that TinyRAM is a convenient tool for
expressing the correctness of nondeterministic computations.

4See more details about the answer instruction in Section 4.
5We thus model all nondeterministic choices via a witness that is given as auxiliary input to the machine. In

particular, reading the next W -bit word from the auxiliary input is a “nondeterministic instruction”.
6Using time bounds is necessary for avoiding running into problems with the undecidability of the halting problem.

7

4 Instructions

The instruction set of TinyRAM consists of 29 instructions. Each instruction is specified via an
opcode and up to three operands. An operand can be a register name (i.e., an integer between 0
and K − 1) or an immediate value (i.e., a W -bit string). Unless stated otherwise, every instruction
does not modify flag and increments pc (the program counter) by i (modulo 2W), where i = 1 for
hvTinyRAM and i = 2W/8 for vnTinyRAM. Generally, the first operand is the destination register
of the computation performed by the instruction, and the other operands (if any) specify arguments
to the instruction. Finally, all instructions take one cycle of the machine to execute.

We now proceed to describe the instruction set of TinyRAM. The instructions are summarized
in Table 1 below; following the table we describe each instruction in more detail.

Notations. In the following, i and j are integers in {0, . . . ,K− 1}; ri is the i-th register, and [ri]
the W -bit string currently stored in it; similarly for rj and [rj]. Also, A denotes either an immediate
value or a register name; [A] denotes its value (i.e., the immediate value itself or the W -bit string
currently stored in the register). At times we also need to consider unsigned and signed integers
represented by a W -bit string. With this in mind, we denote by [ri]u the unsigned integer encoded
by the contents of ri (i.e.,

∑W−1
k=0 ai2

i if ri stores the W -bit string aW−1 · · · a0) and by [ri]s the signed

integer encoded by the contents of ri (i.e., using two’s complement, −aW−12
W−1 +

∑W−2
i=0 ai2

i if ri
stores the W -bit string aW−1 · · · a0). The notations [rj]u, [rj]s and [A]u, [A]s are similarly defined.
When these notations are used, arithmetic is performed over the integers. We also need notation for
values addressing aligned words in memory (which is always addressed in terms of bytes): we thus
denote by [ri]w the unsigned integer, with value in the set {0, . . . , 2W − 1}, obtained by rounding
[ri]u down to a multiple of W/8 (equivalently, the integer whose binary representation is [ri] with
the log2W − 3 least-significant bits set to 0). Finally, we use MSB and LSB to respectively denote
the most-significant (left-most) and least-significant (right-most) bit of a binary string.

8

instruction operands effects flag notes
mnemonic

and ri rj A compute bitwise AND of [rj] and [A] and store result in ri result is 0W

or ri rj A compute bitwise OR of [rj] and [A] and store result in ri result is 0W

xor ri rj A compute bitwise XOR of [rj] and [A] and store result in ri result is 0W

not ri A compute bitwise NOT of [A] and store result in ri result is 0W

add ri rj A compute [rj]u + [A]u and store result in ri overflow
sub ri rj A compute [rj]u − [A]u and store result in ri borrow
mull ri rj A compute [rj]u × [A]u and store least significant bits of result in ri overflow
umulh ri rj A compute [rj]u × [A]u and store most significant bits of result in ri overflow
smulh ri rj A compute [rj]s × [A]s and store most significant bits of result in ri over/underflow
udiv ri rj A compute quotient of [rj]u/[A]u and store result in ri [A]u = 0
umod ri rj A compute remainder of [rj]u/[A]u and store result in ri [A]u = 0
shl ri rj A shift [rj] by [A]u bits to the left and store result in ri MSB of [rj]
shr ri rj A shift [rj] by [A]u bits to the right and store result in ri LSB of [rj]

cmpe ri A none (“compare equal”) [ri] = [A]
cmpa ri A none (“compare above”, unsigned) [ri]u > [A]u
cmpae ri A none (“compare above or equal”, unsigned) [ri]u ≥ [A]u
cmpg ri A none (“compare greater”, signed) [ri]s > [A]s
cmpge ri A none (“compare greater or equal”, signed) [ri]s ≥ [A]s

mov ri A store [A] in ri
cmov ri A if flag = 1, store [A] in ri

jmp A set pc to [A]
cjmp A if flag = 1, set pc to [A] (else increment pc as usual)
cnjmp A if flag = 0, set pc to [A] (else increment pc as usual)

store.b A ri store the least-significant byte of [ri] at the [A]u-th byte in memory
load.b ri A store into ri (with zero-padding in front) the [A]u-th byte in memory
store.w A ri store [ri] at the word in memory that is aligned to the [A]w-th byte
load.w ri A store into ri the word in memory that is aligned to the [A]w-th byte
read ri A if the [A]u-th tape has remaining words then consume the next word, ←− (1)

store it in ri, and set flag = 0; otherwise store 0W in ri and set flag = 1
answer A stall or halt (and the return value is [A]u) (2)
(1) All but the first two tapes are empty: if [A]u 6∈ {0, 1} then store 0W in ri and set flag = 1.
(2) answer causes a stall (i.e., not increment pc) or a halt (i.e., the computation stops); the choice between the two is undefined.

Table 1: Summary of the TinyRAM instruction set. Where “flag” is specified, flag is set
to 1 if the predicate holds and to 0 otherwise. Below, we describe each instruction in
more detail.

9

Bit operations. These are standard bit operations on registers.

and: The instruction and ri rj A stores in ri the bitwise AND of [rj] and [A].
Moreover, flag is set to 1 if the result is 0W and to 0 otherwise.

or: The instruction or ri rj A stores in ri the bitwise OR of [rj] and [A].
Moreover, flag is set to 1 if the result is 0W and to 0 otherwise.

xor: The instruction xor ri rj A stores in ri the bitwise XOR of [rj] and [A].
Moreover, flag is set to 1 if the result is 0W and to 0 otherwise.

not: The instruction not ri A stores in ri the bitwise NOT of [A].
Moreover, flag is set to 1 if the result is 0W and to 0 otherwise.

Integer operations. These are various unsigned and signed integer operations. In each case, the
condition flag is set to 1 if an arithmetic overflow or an error (such as divide by zero) occurs, and
is set to 0 otherwise. (Below, we shall specify, for each operation, the predicate that sets the flag.)

In the sequel, UW is the set of integers {0, . . . , 2W − 1}; these are the 2W integers that can be
encoded by W -bit strings. Similarly, SW is the set of integers {−2W−1, . . . , 0, 1, . . . , 2W−1 − 1};
these are the 2W integers that can be encoded, via two’s complement, by W -bit strings.

add: The instruction add ri rj A stores in ri the W -bit string aW−1 · · · a0 obtained as follows:
aW−1 · · · a0 are the W least significant bits of G = [rj]u + [A]u.
Moreover, flag is set to GW , where GW is the MSB of G.

sub: The instruction sub ri rj A stores in ri the W -bit string aW−1 · · · a0 obtained as follows:
aW−1 · · · a0 are the W least significant bits of G = [rj]u + 2W − [A]u.
Moreover, flag is set to 1−GW , where GW is the MSB of G.

mull: The instruction mull ri rj A stores in ri the W -bit string aW−1 · · · a0 obtained as follows:
aW−1 · · · a0 are the W least significant bits of [rj]u × [A]u.
Moreover, flag is set to 1 if [rj]u × [A]u 6∈ UW and to 0 otherwise.7

umulh: The instruction umulh ri rj A stores in ri the W -bit string aW−1 · · · a0 obtained as follows:
aW−1 · · · a0 are the W most significant bits of [rj]u × [A]u.
Moreover, flag is set to 1 if [rj]u × [A]u 6∈ UW and to 0 otherwise.

smulh: The instruction smulh ri rj A stores in ri the W -bit string aW−1 · · · a0 obtained as follows:
aW−1 is the sign of [rj]s × [A]s and aW−2 · · · a0 are the W − 1 most significant bits of the
absolute value of [rj]s × [A]s.
Moreover, flag is set to 1 if [rj]s × [A]s 6∈ SW and to 0 otherwise.

udiv: The instruction udiv ri rj A stores in ri the W -bit string aW−1 · · · a0 obtained as follows.
If [A]u = 0, then aW−1 · · · a0 = 0W .
If [A]u 6= 0, then aW−1 · · · a0 is the binary encoding of Q where Q is the unique integer such
that [rj]u = [A]u ×Q + R for some integer R ∈ {0, . . . , [A]u − 1}.
Moreover, flag is set to 1 if and only if [A]u = 0.

7An equivalent definition of the mull instruction is the following: “The instruction mull ri rj A stores in ri the
W -bit string aW−1 · · · a0 obtained as follows: aW−1 is the sign of [rj]s × [A]s and aW−2 · · · a0 are the W − 1 least
significant bits of the absolute value of [rj]s× [A]s. Moreover, flag is set to 1 if [rj]u× [A]u 6∈ UW and to 0 otherwise.”

10

umod: The instruction umod ri rj A stores in ri the W -bit string aW−1 · · · a0 obtained as follows.
If [A]u = 0, then aW−1 · · · a0 = 0W .
If [A]u 6= 0, then aW−1 · · · a0 is the binary encoding of R where R is the unique integer in
{0, . . . , [A]u − 1} such that [rj]u = [A]u ×Q + R for some integer Q.
Moreover, flag is set to 1 if and only if [A]u = 0.

Shift operations. These are left and right (logical) shift operations.

shl: The instruction shl ri rj A stores in ri the W -bit string obtained by shifting [rj] by [A]u
bits to the left. The vacant positions (obtained after the shift) are filled with 0’s.
Moreover, flag is set to the most significant bit of [rj].

shr: The instruction shr ri rj A stores in ri the W -bit string obtained by shifting [rj] by [A]u
bits to the right. The vacant positions (obtained after the shift) are filled with 0’s.
Moreover, flag is set to the least significant bit of [rj].

Compare operations. These are various compare operations. Each of these instructions do not
modify any registers; instead, the result of the comparison is stored in the condition flag.

cmpe: The instruction cmpe ri A sets flag to 1 if [ri] = [A] and to 0 otherwise.

cmpa: The instruction cmpa ri A sets flag to 1 if [ri]u > [A]u and to 0 otherwise.

cmpae: The instruction cmpae ri A sets flag to 1 if [ri]u ≥ [A]u and to 0 otherwise.

cmpg: The instruction cmpg ri A sets flag to 1 if [ri]s > [A]s and to 0 otherwise.

cmpge: The instruction cmpge ri A sets flag to 1 if [ri]s ≥ [A]s and to 0 otherwise.

Move operations. These are standard move and conditional move operations.

mov: The instruction mov ri A stores [A] in ri.

cmov: The instruction cmov ri A stores [A] in ri if flag = 1. (If flag = 0, ri is not changed.)

Jump operations. These are standard jump and conditional jump operations. Each of these
instructions do not modify any registers or the condition flag, but only modify the program counter.

jmp: The instruction jmp A stores [A] in pc.

cjmp: The instruction cjmp A stores [A] in pc if flag = 1. (If flag = 0, pc is incremented as usual.)

cnjmp: The instruction cnjmp A stores [A] in pc if flag = 0. (If flag = 1, pc is incremented as usual.)

Memory operations. These are simple load and store operations where the address in memory is
determined either by an immediate value or the contents of a register. These are the only addressing
modes in TinyRAM. (In particular, the common “base+offset” addressing mode is not supported.)

store.b: The instruction store.b A ri stores the least-significant byte of [ri] at the [A]u-th byte in
memory.

11

load.b: The instruction load.b ri A stores into ri (with zero-padding in front) the [A]u-th byte in
memory.

store.w: The instruction store.w A ri stores [ri] at the word in memory that is aligned to the [A]w-th
byte.

load.w: The instruction load.w ri A stores into ri the word in memory that is aligned to the [A]w-th
byte.

Input operation. This is the instruction to access contents to one of the two input tapes; the
0-th tape is used for the primary input and the 1-th tape is used for an auxiliary input.

read: The instruction read ri A stores in ri the next W -bit word on the [A]u-th tape, if any. More
precisely, if the [A]u-th tape has remaining words then consume the next word, store it in ri,
and set flag = 0; otherwise (if there are no remaining input words on the [A]u-th tape) store
0W in ri and set flag = 1.
Because TinyRAM only has two input tapes, all but the first two tapes are assumed to be
empty. Specifically, if [A]u is not 0 or 1, then we store 0W in ri and set flag = 1.

Answer operation. This instruction signifies that the program has finished the computation and
thus no additional operations are allowed.

answer: The instruction answer A causes the machine to stall (i.e., not increment pc) or halt (i.e., the
computation stops) with return value [A]u. The choice between stall or halt is undefined. A
return value of 0 is used to indicate that the program accepted (see Section 3).

12

5 Assembly Language

A TinyRAM program P is written in the TinyRAM assembly language, which we now describe. (The
syntax is inspired by the Intel x86 syntax.)

A TinyRAM program P is a text file consisting of a sequence of lines (separated by CR, LF
or CR/LF). The text file is structured as follows. If a program is for hvTinyRAM, the first line
contains the string

“; TinyRAM V=2.000 M=hv W=W K=K”

if instead the program is for vnTinyRAM, the first line contains the string

“; TinyRAM V=2.000 M=vn W=W K=K”.

Above, W is the word size in decimal representation and K is the number of registers in decimal
representation. Each subsequent line contains the following, in sequence:

1. Optional whitespace.

2. An optional label followed by “:”. This defines the label as referring to the first instruction
following it (if any).
A label must match the regular expression “ [0-9a-zA-Z]+”. In particular, a label must start
with an underscore (to distinguish the label from an immediate value and registers).

3. An optional instruction, consisting of an instruction mnemonic, followed by its operands (if any).
The instruction mnemonic is separated from the first operand by whitespace; and subsequent
operands are separated by a comma (“,”) surrounded by optional whitespaces. Registers are
specified as “r” followed by the register number in decimal, e.g., “r0”, “r12”. An immediate
operand may be written as an integer in decimal representation, or as a label; an integer a
(which may be negative) represents the W -bit word x such that [x]u ≡ a mod 2W .

4. Optional whitespace.

5. An optional comment starting with a semicolon (“;”) and lasting until the end of the line.

Every instruction has an implicit number. In hvTinyRAM, instructions are numbered sequen-
tially starting with 0 (ignoring non-instruction lines), and there can be at most 2W instructions.
In vnTinyRAM, instructions are numbered sequentially, starting with 0, in steps of W/4 (so to
represent properly aligned-addresses).

A label may be defined at most once. Labels given as operands must be defined, and are resolved
to the number of the instruction following the label definition.

13

6 Preamble

In the context of succinctly verifying nondeterministic computations [BCGT13, BCG+13], we re-
quire TinyRAM programs to start with a specific preamble given below. This is is needed for
technical reasons, to improve the efficiency of reducing accepting computations (see Section 3) to
circuit satisfiability (and other related problems).

Definition 6.1. We say that P is a proper TinyRAMW,K program if it starts with the instructions:

I0. store.w 0, r0

I1. mov r0, 2W−1

I2. read r1, 0

I3. cjmp I7

I4. add r0, r0, inc

I5. store.w r0, r1

I6. jmp I2

I7. store.w 2W−1, r0

where, above,

• Ii = 1 · i and inc = 1 for hvTinyRAM, and

• Ii = 2W/8 · i and inc = W/8 for vnTinyRAM.

In other words, we only consider TinyRAM programs working as follows. First, the program
stores 0W in address 0W , and after that the program reads all of the primary input into memory
(reading one word at a time, each time storing the word into the next available address starting from
address 2W−1 + inc, and finally storing in address 2W−1 the address of where the last input word
was stored).8 Afterwards, since an n-word input is stored in addresses 2W−1+ inc, . . . , 2W−1+n· inc,
when the program wants to access a word of the primary input, it can do so by reading the suitable
address in memory. (The program can learn the length of the input because address 2W−1 contains
the value 2W−1 + n · inc.)9

Remark 6.2. In order to work correctly, a proper program should only be given inputs that are
at most 2W−1 words in the case of hvTinyRAM and 2W+2/W words in the case of vnTinyRAM.
Furthermore, in the case of vnTinyRAM, one should only consider programs that are at most
2W+1/W instructions, or else some instructions stored in the “lower half of memory” are overwritten
by the preamble.

8Let us explain the code in Definition 6.1 in somewhat more detail. First of all, Instruction 0 is only a technicality,
and the “interesting” part of the code is Instructions 1 through 7, which are the instructions responsible for reading
the primary input. Register r0 stores a pointer to the last available address, while register r1 holds the current word
read from the primary input tape (i.e., tape 0). Instruction 2 reads the next primary input word from the tape; if
there is one, then it is stored in register r1 and the condition flag flag is not set; otherwise flag is set. Instruction
3 checks if flag is set. If flag is not set, the program proceeds to increase the counter r0 and then store in memory
the new word from the input; then the program jumps back to Instruction 2 in order to try to read a new word from
tape 0. Otherwise, if flag is set, the program jumps to Instruction 7 in order to store in address 2W−1 the current
value of r0, which holds address 2W−1 + n · inc (where n is the number of words in the primary input) which is the
address at which the last word was stored.

9A program may, later, reuse these memory addresses. However, the primary input tape is fully consumed and
cannot be read again.

14

7 Binary Encoding Of Instructions

An instruction is specified via an opcode and up to three operands. (See Section 4.) We now describe
the binary encoding of an instruction. The binary encoding assumes that 6 + 2 · dlog2Ke ≤ W ;
this is the case for natural choices of K and W . (E.g., K,W = 16 or K,W = 32 both work.)

An instruction is encoded via the following six binary fields.

• Field #1. This field stores the instruction’s opcode, which consists of 5 = dlog2 29e bits.
(See Table 2 for the opcodes.)

• Field #2. This field is a bit that is 0 if A is a register name and 1 if A is an immediate value.

• Field #3. This field stores a register name operand, which consists of dlog2Ke bits. It is all
0’s when not used. This is the name of the instruction’s destination register (i.e., the one to be
modified) if any.

• Field #4. This field stores a register name operand, which consists of dlog2Ke bits. It is all 0’s
when not used. This is the name of a register operand (if any) that will not be modified by the
instruction.

• Field #5. This field consists of padding with any sequence of W − 6− 2|K| bits, so that the first
five fields fit exactly in a string of W bits.

• Field #6. This is either the name of another register (which is not modified by the instruction)
or an immediate value, as determined by field #2. The length of this field is W bits (which is
the maximum between the length of a register name and of an immediate value).

Overall the instruction is thus encoded using 2W bits, by concatenating fields 1 through 6 (in this
order) and taking the MSB-to-LSB representation of each field. For example, if we take K,W = 16,
a valid encoding of the instruction add r3 r7 1234 is the following 2W = 32 bits:

00100︸ ︷︷ ︸
add

1︸︷︷︸
3rd arg is imm.

0011︸︷︷︸
r3

0111︸︷︷︸
r7

00︸︷︷︸
padding

0000010011010010︸ ︷︷ ︸
1234

.

See Table 2 for details on opcodes and field assignments. Any sequence of 2W bits beginning with
an opcode that does not appear in Table 2 is assumed to encode the instruction answer 1.

15

instruction
operands

binary encoding (in six fields)
mnemonic #1 #2 #3 #4 #5 #6

and ri rj A 00000 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
or ri rj A 00001 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
xor ri rj A 00010 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
not ri A 00011 0/1 〈i〉 ∗|K| ∗W−6−2|K| 〈A〉
add ri rj A 00100 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
sub ri rj A 00101 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
mull ri rj A 00110 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
umulh ri rj A 00111 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
smulh ri rj A 01000 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
udiv ri rj A 01001 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
umod ri rj A 01010 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
shl ri rj A 01011 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
shr ri rj A 01100 0/1 〈i〉 〈j〉 ∗W−6−2|K| 〈A〉
cmpe ri A 01101 0/1 ∗|K| 〈i〉 ∗W−6−2|K| 〈A〉
cmpa ri A 01110 0/1 ∗|K| 〈i〉 ∗W−6−2|K| 〈A〉
cmpae ri A 01111 0/1 ∗|K| 〈i〉 ∗W−6−2|K| 〈A〉
cmpg ri A 10000 0/1 ∗|K| 〈i〉 ∗W−6−2|K| 〈A〉
cmpge ri A 10001 0/1 ∗|K| 〈i〉 ∗W−6−2|K| 〈A〉
mov ri A 10010 0/1 〈i〉 ∗|K| ∗W−6−2|K| 〈A〉
cmov ri A 10011 0/1 〈i〉 ∗|K| ∗W−6−2|K| 〈A〉
jmp A 10100 0/1 ∗|K| ∗|K| ∗W−6−2|K| 〈A〉
cjmp A 10101 0/1 ∗|K| ∗|K| ∗W−6−2|K| 〈A〉
cnjmp A 10110 0/1 ∗|K| ∗|K| ∗W−6−2|K| 〈A〉
store.b A ri 11010 0/1 〈i〉 ∗|K| ∗W−6−2|K| 〈A〉
load.b ri A 11011 0/1 〈i〉 ∗|K| ∗W−6−2|K| 〈A〉
store.w A ri 11100 0/1 〈i〉 ∗|K| ∗W−6−2|K| 〈A〉
load.w ri A 11101 0/1 〈i〉 ∗|K| ∗W−6−2|K| 〈A〉
read ri A 11110 0/1 〈i〉 ∗|K| ∗W−6−2|K| 〈A〉
answer A 11111 0/1 ∗|K| ∗|K| ∗W−6−2|K| 〈A〉

Table 2: Binary encoding of the TinyRAM instructions. The opcode in field #1 is written
MSB-first. Field #2 is 0 if A is a register name, and 1 if A is an immediate value. Also,
|K| denotes dlog2Ke; 〈·〉 denotes the binary representation of the argument (which is |K|
bits long for fields #3 and #4, and W bits long for field #6); and ∗m denotes any binary
string of m bits.

16

References

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for
C: Verifying program executions succinctly and in zero knowledge. In Proceedings of the 33rd Annual
International Cryptology Conference, CRYPTO ’13, pages 90–108, 2013.

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs to
delegatable succinct constraint satisfaction problems. In Proceedings of the 4th Innovations in Theoretical
Computer Science Conference, ITCS ’13, pages 401–414, 2013.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles
of elliptic curves. In Proceedings of the 34th Annual International Cryptology Conference, CRYPTO ’14,
pages 276–294, 2014. Extended version at http://eprint.iacr.org/2014/595.

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero
knowledge for a von Neumann architecture. In Proceedings of the 23rd USENIX Security Symposium,
Security ’14, pages 781–796, 2014. Extended version at http://eprint.iacr.org/2013/879.

[SCI] SCIPR Lab. libsnark: a C++ library for zkSNARK proofs.

17

http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879

	Contents
	1 Introduction
	2 Architecture Overview
	3 Accepting Computations
	4 Instructions
	5 Assembly Language
	6 Preamble
	7 Binary Encoding Of Instructions
	References

